|
OREN2009 | Mathematic-II- | 3+0+0 | ECTS:0 | Year / Semester | Fall Semester | Level of Course | First Cycle | Status | Elective | Department | DEPARTMENT of FOREST INDUSTRY ENGINEERING | Prerequisites and co-requisites | None | Mode of Delivery | | Contact Hours | 14 weeks - 3 hours of lectures per week | Lecturer | Doç. Dr. Gül TUĞ | Co-Lecturer | | Language of instruction | Turkish | Professional practise ( internship ) | None | | The aim of the course: | |
Learning Outcomes | CTPO | TOA | Upon successful completion of the course, the students will be able to : | | | LO - 1 : | vector, eigenvalues and eigenvectors recognizes and applies | 1,5 | 1 | LO - 2 : | Know the vector space | 1,5 | 1 | LO - 3 : | Recognize linear transformation | 1,5 | 1 | LO - 4 : | knows the concepts of conic sections and express in polar coordinates. | 1,5 | 1 | LO - 5 : | know vectors in two and three dimensional spaces | 1,5 | 1 | LO - 6 : | understand functions of two and three variables and their properties | 1,5 | 1 | LO - 7 : | know the concepts of limit and continuity of functions of two and three variables | 1,5 | 1 | LO - 8 : | know the concepts of derivative and apply it to chemistry problems | 1,5 | 1 | LO - 9 : | know the concepts of integration and apply it to chemistry problems | 1,5 | 1 | CTPO : Contribution to programme outcomes, TOA :Type of assessment (1: written exam, 2: Oral exam, 3: Homework assignment, 4: Laboratory exercise/exam, 5: Seminar / presentation, 6: Term paper), LO : Learning Outcome | |
Vectors, eigenvalues and eigenvectors, Vektör Spaces, Linear transformations, simplex method. Three dimensional space and Cartesian coordinates. Lines, planes, Conic sections and quadratic equations, polar coordinates and plotting graphs, parameterization of curves on plane. Cylinders, conics and sphere. Cylindrical and spherical coordinates. Vector valued functions, and curves on the space, curvature, torsion and TNB frame. Multi variable functions, limit, continuity and partial derivative. Chain rule, directional derivative, gradient, divergence, rotational and tangent planes. Ekstremum values and saddle points. Lagrange multipliers, drawing of degenere conic sections. Taylor and Maclaurin series. Double integration, areas, moment and gravitational center. Double integrals in polar coordinates. Triple integrals in cartesian coordinates. Mass, moment and gravitational center in three dimensional space. Triple integrals in cylindrical and spherical coordinates. Change of variables in multiple integrals. |
|
1 | Keleş, H. 2015; Lineer Cebire Giriş-I-, Bordo, Akademi. | | 2 | Keleş, H. 2015; Yüksek Matematik, Akademi. | | 3 | Kolman, B., Hill, D.L. (Çev Edit: Akın, Ö.) 2002. Uygulamalı lineer cebir. Palme Yayıncılık, Ankara. | | 4 | Balcı, M. 2009. Genel Matematik 2, Balcı Yayınları, Ankara | | 5 | Thomas, G.B., Finney, R.L.. (Çev: Korkmaz, R.), 2001. Calculus ve Analitik Geometri, Cilt II, Beta Yayınları, İstanbul. | | |
Method of Assessment | Type of assessment | Week No | Date | Duration (hours) | Weight (%) | Mid-term exam | 8 | 18/11/2019 | 1,5 | 50 | End-of-term exam | 16 | 16/01/2020 | 1,5 | 50 | |
Student Work Load and its Distribution | Type of work | Duration (hours pw) | No of weeks / Number of activity | Hours in total per term | Yüz yüze eğitim | 3 | 14 | 42 | Sınıf dışı çalışma | 5 | 14 | 70 | Arasınav için hazırlık | 9 | 1 | 9 | Arasınav | 1.5 | 1 | 1.5 | Dönem sonu sınavı için hazırlık | 10 | 1 | 10 | Dönem sonu sınavı | 1.5 | 1 | 1.5 | Total work load | | | 134 |
|