|
MAT2011 | Diferansiyel Denklemler | 4+0+0 | AKTS:5 | Yıl / Yarıyıl | Güz Dönemi | Ders Duzeyi | Lisans | Yazılım Şekli | Zorunlu | Bölümü | İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ | Ön Koşul | Yok | Eğitim Sistemi | Yüz yüze | Dersin Süresi | 14 hafta - haftada 4 saat teorik | Öğretim Üyesi | Dr. Öğr. Üyesi Hüsnü Anıl ÇOBAN | Diğer Öğretim Üyesi | Bölüm öğretim üyeleri | Öğretim Dili | Türkçe | Staj | Yok | | Dersin Amacı: | Dersin amacı fen bilimleri ve mühendislik alanlarında karşılaşılan problemlere ait matematiksel modellerin oluşturulması, oluşturulan modellerin analitik, kalitatif ve temel bazı sayısal çözüm yöntemleri ile çözülmesi ve çözümlerin matematiksel model kapsamında yorumlanabilme bilgi ve becerisinin kazandırılmasıdır. |
Öğrenim Kazanımları | PÖKK | ÖY | Bu dersi başarı ile tamamlayan öğrenciler : | | | ÖK - 1 : | çeşitli problemlerin matematiksel modellerini fomüle edebilecektir. | 1,2 | 1 | ÖK - 2 : | analitik, nitel ve kısmi bazı sayısal yöntemler kullanarak modeli çözebilecektir. | 1,2 | 1 | ÖK - 3 : | modellenen olayın kavramları yardımıyla çözümü yorumlayabilecektir. | 1,2 | 1 | ÖK - 4 : | ders kapsamında incelenen iyi tanımlı bir problemin çözümünü belirleyebilirler | 1,2 | 1 | PÖKK :Program öğrenim kazanımlarına katkı, ÖY : Ölçme ve değerlendirme yöntemi (1: Yazılı Sınav, 2: Sözlü Sınav, 3: Ev Ödevi, 4: Laboratuvar Çalışması/Sınavı, 5: Seminer / Sunum, 6: Dönem Ödevi / Proje),ÖK : Öğrenim Kazanımı | |
Diferensiyel denklemler ve temel kavramlar. Matematiksel model olarak diferensiyel denklemler. (Adi-kısmi diferensiyel denklemler, diferensiyel denklemlerin derece ve mertebesi. Diferensiyel denklemlerin elde edilişi). Diferensiyel denklemlerin genel, özel ve tekil çözümleri. Varlık-Teklik teoremleri. Yön alanları ve çözüm eğrileri. Değişkenlerine ayrılabilen, homojen, tam ve tam şekle dönüştürülebilen diferensiyel denklemler. Lineer diferensiyel denklem, Bernoulli diferensiyel denklemi ve uygulamalar (nüfus modeli, ivme-hız modeli, ısı problemleri). Değişken değiştirme yöntemi. İndirgenebilir denklemler (Değişkenlerden birini içermeyen ve lineer olmayan diferensiyel denklemler). n-inci mertebeden lineer diferensiyel denklemlerin genel çözüm teorisi (çözümlerin lineer bağımsızlığı, homojen denklemler için süperpoziyon prensibi, özel ve genel çözüm kavramları). n-inci mertebeden sabit katsayılı homojen diferensiyel denklemlerin genel çözümleri. Sabit katsayılı homojen olmayan denklemler ve çözüm yöntemleri. (Belirsiz katsayılar yöntemi Parametrelerin değişimi yöntemi). Başlangıç ve sınır değer problemleri. (Sınır değer problemleri için özdeğerler, öz fonksiyonlar. Fiziksel uygulamalar, mekanik titreşimler, Elektrik devreleri). Değişken katsayılı homojen ve homojen olmayan diferensiyel denklemler (Cauchy-Euler, Legendre diferensiyel denklemleri). Mertebe düşürme yöntemi. Diferensiyel denklemlerin adi nokta civarında seriler yardımıyla çözümü. Laplace ve ters Laplace dönüşümleri. Sabit ve değişken katsayılı başlangıç değer problemleri ile Delta-Dirac ve öteleme fonksiyonlarını içeren diferensiyel denklemlerin Laplace yöntemiyle çözümleri. Diferensiyel denklem sistemleri. Yüksek mertebeden diferensiyel denklemlerin birinci mertebeden sisteme dönüştürülmesi. Homojen diferansiyel denklem sistemlerin özdeğer, özvektör yöntemi ile çözümü. Homojen olmayan sabit katsayılı diferensiyel denklem sistemlerinin çözümleri. Laplace dönüşümlerinin diferensiyel denklem sistemlerine uygulanışı. Diferensiyel denklemler için sayısal çözüm yöntemleri (Euler ve Runge-Kutta yöntemi). |
|
Haftalık Detaylı Ders Planı | Hafta | Detaylı İçerik | Önerilen Kaynak | Hafta 1 | Diferensiyel denklemler ve temel kavramlar. Matematiksel model olarak diferensiyel denklemler. (Adi-kısmi diferensiyel denklemler, diferensiyel denklemlerin derece ve mertebesi. Diferensiyel denklemlerin elde edilişi). | | Hafta 2 | Diferensiyel denklemlerin genel, özel ve tekil çözümleri. Varlık-Teklik teoremleri. Yön alanları ve çözüm eğrileri. | | Hafta 3 | Değişkenlerine ayrılabilen, homojen, tam ve tam şekle dönüştürülebilen diferensiyel denklemler. | | Hafta 4 | Lineer diferensiyel denklem, Bernoulli diferensiyel denklemi ve uygulamalar (nüfus modeli, ivme-hız modeli, ısı problemleri). | | Hafta 5 | Değişken değiştirme yöntemi. İndirgenebilir denklemler (Değişkenlerden birini içermeyen ve lineer olmayan diferensiyel denklemler). | | Hafta 6 | n-inci mertebeden lineer diferensiyel denklemlerin genel çözüm teorisi (çözümlerin lineer bağımsızlığı, homojen denklemler için süperpoziyon prensibi, özel ve genel çözüm kavramları). n-inci mertebeden sabit katsayılı homojen diferensiyel denklemlerin genel çözümleri. | | Hafta 7 | Sabit katsayılı homojen olmayan denklemler ve çözüm yöntemleri. (Belirsiz katsayılar yöntemi Parametrelerin değişimi yöntemi). | | Hafta 8 | Arasınav | | Hafta 9 | Başlangıç ve sınır değer problemleri. (Sınır değer problemleri için özdeğerler, öz fonksiyonlar. Fiziksel uygulamalar, mekanik titreşimler, Elektrik devreleri). | | Hafta 10 | Değişken katsayılı homojen ve homojen olmayan diferensiyel denklemler (Cauchy-Euler, Legendre diferensiyel denklemleri). Mertebe düşürme yöntemi. | | Hafta 11 | Diferensiyel denklemlerin adi nokta civarında seriler yardımıyla çözümü.
| | Hafta 12 | Laplace ve ters Laplace dönüşümleri. Kısa Sınav.
| | Hafta 13 | Sabit ve değişken katsayılı başlangıç değer problemleri ile Delta-Dirac ve öteleme fonksiyonlarını içeren diferensiyel denklemlerin Laplace yöntemiyle çözümleri. | | Hafta 14 | Diferensiyel denklem sistemleri. Yüksek mertebeden diferensiyel denklemlerin birinci mertebeden sisteme dönüştürülmesi. Homojen diferansiyel denklem sistemlerin özdeğer, özvektör yöntemi ile çözümü. Homojen olmayan sabit katsayılı diferensiyel denklem sistemlerinin çözümleri. | | Hafta 15 | Laplace dönüşümlerinin diferensiyel denklem sistemlerine uygulanışı. Diferensiyel denklemler için sayısal çözüm yöntemleri (Euler ve Runge-Kutta yöntemi). | | Hafta 16 | Dönem sonu sınavı | | |
1 | Edwards, C.H., Penney, D.E. (Çeviri Ed. AKIN, Ö). 2006; Diferensiyel Denklemler ve Sınır Değer Problemleri (Bölüm 1-7), Palme Yayıncılık, Ankara. | | |
1 | COŞKUN, H. 2002; Diferansiyel Denklemler, KTÜ Yayınları, Trabzon. | | 2 | BAŞARIR, M., TUNCER, E.S. 2003; Çözümlü Problemlerle Diferansiyel Denklemler, Değişim Yayınları, İstanbul. | | 3 | KREYSZIG, E. 1997; Advenced Engineering Mathematics, New York. | | 4 | BRONSON, R. (Çev. Ed: HACISALİHOĞLU, H.H.) 1993; Diferansiyel Denklemler, Nobel Yayınları, Ankara | | 5 | SPIEGEL, M.R. 1965; Theory and Problems of Laplace Transforms, McGraw-Hill Book company, New York. | | |
Ölçme Yöntemi | Yöntem | Hafta | Tarih | Süre (Saat) | Katkı (%) | Arasınav | 08 | 30/03/2010 | 2 | 30 | Yıl içi çalışma | 12 | 30/04/2010 | 2 | 20 | Dönem sonu sınavı | 17 | 02/06/2010 | 2 | 50 | |
Öğrenci Çalışma Yükü | İşlem adı | Haftalık süre (saat) | Hafta sayısı | Dönem toplamı | Yüz yüze eğitim | 4 | 14 | 56 | Sınıf dışı çalışma | 5.5 | 14 | 77 | Arasınav için hazırlık | 6 | 1 | 6 | Arasınav | 2 | 1 | 2 | Kısa sınav | 2 | 1 | 2 | Dönem sonu sınavı için hazırlık | 7 | 1 | 7 | Dönem sonu sınavı | 2 | 1 | 2 | Toplam Çalışma Yükü | | | 152 |
|