Türkçe | English
GRADUATE INSTITUTE of NATURAL and APPLIED SCIENCES / DEPARTMENT of FOREST ENGINEERING
Doctorate
Course Catalog
http://www.orman.ktu.edu.tr/om/index.html
Phone: +90 0462 +90 (462) 3772805
FBE
GRADUATE INSTITUTE of NATURAL and APPLIED SCIENCES / DEPARTMENT of FOREST ENGINEERING / Doctorate
Katalog Ana Sayfa
  Katalog Ana Sayfa  KTÜ Ana Sayfa   Katalog Ana Sayfa
 
 

ORM7373Remote Sensing in Forestry3+0+0ECTS:7.5
Year / SemesterSpring Semester
Level of CourseThird Cycle
Status Elective
DepartmentDEPARTMENT of FOREST ENGINEERING
Prerequisites and co-requisitesNone
Mode of DeliveryFace to face, Lab work , Practical
Contact Hours14 weeks - 3 hours of lectures per week
LecturerProf. Dr. Mehmet MISIR
Co-LecturerProf. Dr. Selahattin KÖSE
Language of instructionTurkish
Professional practise ( internship ) None
 
The aim of the course:
Introducing remote sensing techniques like arial photographs and space imaginary used in forestry, and explicating related issues.
 
Programme OutcomesCTPOTOA
Upon successful completion of the course, the students will be able to :
PO - 1 : Define and explain the importance of Remote Sensing and photo interpretation as applied to forest resource management, basic principles of remote sensing, the electromagnetic spectrum.11
PO - 2 : Appoint and characterize stand types on areal photos9,101
PO - 3 : Explain satellites, sensors, image processing, interpretation, correction, True color view, false color view, classification, filtering.4,6,7,8,91
PO - 4 : Classify a satellite image with ERDAS Imagine7,9,124
PO - 5 : Develop and present a case study results to the class using real time exercise of ERDAS Imagine software10,114
CTPO : Contribution to programme outcomes, TOA :Type of assessment (1: written exam, 2: Oral exam, 3: Homework assignment, 4: Laboratory exercise/exam, 5: Seminar / presentation, 6: Term paper), PO : Learning Outcome

 
Contents of the Course
Definition of remote sensing. Remote sensing systems. Image-photograph difference. Ortophoto. Stereoscopic vision applications. Earth resource satellites. Multispectral scanners. Thermal scanners. Termography. Microwave sensing. Digital image processing. Comparison of aerial and satellite photographs, forest inventory, forest management, silviculture, afforestation, forest protection, forest law, cartography, landscape architecture and geographical information systems.
 
Course Syllabus
 WeekSubjectRelated Notes / Files
 Week 1Description of Remote Sensing, History, Data Sources, Remote Sensing Systems
 Week 2Electromagnetic Spectrum, Film, Photograph, Aerial Photo, Film types used in airal photo
 Week 33-D vision and the effective area of aerial photo
 Week 4Definition of Tree species on Aerial photo
 Week 5Measurement of tree height, Measurement of crown size and determination of crown closure
 Week 6Definitİon of stand types on aerial photo
 Week 7Satellites, natural resources satellites , resolution satellite imagery
 Week 8Landsat, Spot and Quickbird satellites general features of the application areas
 Week 9Mid-term exam
 Week 10Bilsat, Ikonos and IRS/ERS satellites general features of the application areas
 Week 11Image Preprocessing, image processing
 Week 12classification on satellite imagery and practicum exam
 Week 13Image Preprocessing, image classification and image processing on satellite imagery with ERDAS Imagine
 Week 14Student presentations
 Week 15Image clasification with ERDAS Imagine
 Week 16End-of-term exam
 
Textbook / Material
1Köse, S., Cömert, Ç. 1999, Ormancılıkta Foto Yorumlama, Orman Fakültesi Yayınları, No:1, Artvin.
2Soykan, B. 1986, Ormancılıkta Foto Yorumlama, KTÜ Orman Fakültesi, Yayın No: 9, Trabzon.
 
Recommended Reading
1Sesören, A., 1999. Uzaktan Algılamada Temel Kavramlar. Mart Matbaacılık Sanatları,İstanbul.
2Musaoğlu, N., 1999. Elektro-Optik ve Aktif Mikrodalga Algılayıcılardan Elde EdilenUydu Verilerinden Orman Alanlarında Meşcere Tiplerinin ve Yetişme OrtamıBirimlerinin Belirlenme Olanakları, Doktora Tezi, İ.T.Ü., Fen Bilimleri Enstitüsü, İstanbul.
3Jensen, J.R., 1996. Introductory Digital Image Processing: A Remote Sensing Perspective, Prentice Hall Inc., USA.
4ERDAS, 1982-2004, ERDAS Field Guide. 6 th Edition, Atlanta, Georgia.
 
Method of Assessment
Type of assessmentWeek NoDate

Duration (hours)Weight (%)
Mid-term exam 9 17/11/2016 1 30
Laboratory exam 12 08/12/2016 1 10
Presentation 14 22/12/2016 1 10
End-of-term exam 16 11/01/2017 1 50
 
Student Work Load and its Distribution
Type of workDuration (hours pw)

No of weeks / Number of activity

Hours in total per term
Yüz yüze eğitim 3 10 30
Sınıf dışı çalışma 0 0 0
Laboratuar çalışması 3 5 15
Arasınav için hazırlık 5 7 35
Arasınav 1 2 2
Uygulama 3 6 18
Klinik Uygulama 0 0 0
Ödev 10 3 30
Proje 3 3 9
Kısa sınav 0 0 0
Dönem sonu sınavı için hazırlık 10 2 20
Dönem sonu sınavı 2 1 2
Diğer 1 3 3 9
Diğer 2 4 5 20
Total work load190